The Lit Motors C-1 is a fully-enclosed two-passenger electric motorbike that uses an electronically-controlled gyroscopic stabilizing system to stay upright when stopped.
So far, Kim and his team have developed an operating model of the C-1's flywheel-based stabilization system, along with a full-scale fiberglass mock-up of the vehicle itself. They are now working on a hand-built steel uni-bodied working prototype, which should reportedly be complete within about three months. Plans call for an initial run of production vehicles to be available at a price of about US$24,000 by late 2013, with that price going down to $16,000 once full production gets under way in 2014.
Different versions of the C-1 will be available for different markets. The model aimed at First World countries will have an 8-10 kilowatt-hour battery pack, while a model intended for developing nations will be rated at about 4-6 kWh. The vehicle will incorporate electric hub motors in both wheels, at least one of those motors being a high-performance Remy HVH unit. The top speed should be at least 120 mph (193 km/h), with driving range for the higher-end model expected to sit at around 150 to 220 miles (241 to 354 km) per charge, depending on the exact size of the battery.
Robert Heinlein described this vehicle pretty accurately in his 1940 classic The Roads Must Roll:
He picked out a car, still some distance away, but approaching at headlong speed. It braked, and came to a stop alongside them.
It was a small affair, ovoid in shape, and poised on two centerline wheels…
As the glassite hood was being swung back into place...
Scroll down for more stories in the same category. (Story submitted 3/28/2016)
Technovelgy (that's tech-novel-gee!)
is devoted to the creative science inventions and ideas of sf authors. Look for
the Invention Category that interests
you, the Glossary, the Invention
Timeline, or see what's New.
A System To Defeat AI Face Recognition
'...points and patches of light... sliding all over their faces in a programmed manner that had been designed to foil facial recognition systems.'